EXAMPLE A Find the point at which the line with parametric equations $x=2+3 t$, $y=-4 t, z=5+t$ intersects the plane $4 x+5 y-2 z=18$.

SOLUTION We substitute the expressions for x, y, and z from the parametric equations into the equation of the plane:

$$
4(2+3 t)+5(-4 t)-2(5+t)=18
$$

This simplifies to $-10 t=20$, so $t=-2$. Therefore, the point of intersection occurs when the parameter value is $t=-2$. Then $x=2+3(-2)=-4, y=-4(-2)=8$, $z=5-2=3$ and so the point of intersection is $(-4,8,3)$.

EXAMPLE B In Example 3 we showed that the lines

$$
\left.\begin{array}{lll}
L_{1}: & x=1+t & y=-2+3 t \\
L_{2}: & x=2 s & y=3+s
\end{array}\right) z=-3+4 s
$$

are skew. Find the distance between them.
SOLUTION Since the two lines L_{1} and L_{2} are skew, they can be viewed as lying on two parallel planes P_{1} and P_{2}. The distance between L_{1} and L_{2} is the same as the distance between P_{1} and P_{2}, which can be computed as in Example 8. The common normal vector to both planes must be orthogonal to both $\mathbf{v}_{1}=\langle 1,3,-1\rangle$ (the direction of L_{1}) and $\mathbf{v}_{2}=\langle 2,1,4\rangle$ (the direction of L_{2}). So a normal vector is

$$
\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 3 & -1 \\
2 & 1 & 4
\end{array}\right|=13 \mathbf{i}-6 \mathbf{j}-5 \mathbf{k}
$$

If we put $s=0$ in the equations of L_{2}, we get the point $(0,3,-3)$ on L_{2} and so an equation for P_{2} is

$$
13(x-0)-6(y-3)-5(z+3)=0 \quad \text { or } \quad 13 x-6 y-5 z+3=0
$$

If we now set $t=0$ in the equations for L_{1}, we get the point $(1,-2,4)$ on P_{1}. So the distance between L_{1} and L_{2} is the same as the distance from $(1,-2,4)$ to $13 x-6 y-5 z+3=0$. By Formula 9, this distance is

$$
D=\frac{|13(1)-6(-2)-5(4)+3|}{\sqrt{13^{2}+(-6)^{2}+(-5)^{2}}}=\frac{8}{\sqrt{230}} \approx 0.53
$$

