
EQUATIONS OF LINES AND PLANES

EXAMPLE A Find the point at which the line with parametric equations ,
, intersects the plane .

SOLUTION We substitute the expressions for , , and from the parametric equa-
tions into the equation of the plane:

This simplifies to , so . Therefore, the point of intersection occurs
when the parameter value is . Then , ,

and so the point of intersection is ■

EXAMPLE B In Example 3 we showed that the lines

are skew. Find the distance between them.

SOLUTION Since the two lines and are skew, they can be viewed as lying on
two parallel planes and . The distance between and is the same as the
distance between and , which can be computed as in Example 8. The common
normal vector to both planes must be orthogonal to both (the direc-
tion of ) and (the direction of ). So a normal vector is

If we put in the equations of , we get the point on and so an
equation for is

If we now set in the equations for , we get the point on . So 
the distance between and is the same as the distance from to

. By Formula 9, this distance is
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